Judge Training Workshop

Central NM Science & Engineering Research Challenge
Finding Judges

• Word of mouth
• Judge Info page of website
• Volunteer database
• E-mail
• Phone calls (last resort)
• Student feedback
• Work practice observation
• Quality of Fair
• Quality of judging experience
Benefits of Being a Judge

• Excellent Opportunity to Network.
• Develop Communication Skills.
• Develop Analytical and Evaluation skills.
 – Translates into leadership and management skill base
• Sharpen your Investigative Skills.
• Build Self Confidence.
• Share Knowledge with Today’s Youth.
• Have fun while helping others.
Why is Training Important?

• Up to 33% or more of the judges each year will be first time judges.
• Contestants will have more contact with Judges than anyone else in the Research Challenge.
• Judge interaction with the contestants is the image left behind after the event.
• Judging quality ensures the right winners are rewarded.
• Judging quality raises the quality of future competitions.
What Judges Need to Know

- Who will be my contacts at the event?
- Date, time and judging day schedule.
- What to expect at the event.
- What is expected of them as Judges.
- People skills in handling students.
- How to use judging materials.
- How to dress.
- What’s in it for me (WII-FM)?
What does the competition look like?
What does an interview look like?
What does a project look like?
The Roles of a Judge

- Evaluator
- Facilitator
- Counselor
- Motivator
- Role Model
Provide a Good Experience for the Competitors

• Be Genuine.
• Let the contestants show their stuff.
• Encourage conversation.
• Avoid value judgments.
• Give one opportunity for improvement.
• End meeting on a positive note.
Judge Behavior with Students

- Work to put students at ease. *(Sit Down)*
- If students are intimidated, they will not speak freely.
- Show you are interested.
- Listen actively.
- Give positive reinforcement to nourish self esteem. *(say what you like about project)*
- Ask students about their project, not just what they did or the steps they took.
Judge Behavior with Students

- Ask students enough questions to satisfy yourself that they understood the project.
- When you have reached the student’s knowledge limit, **STOP!** asking questions.
- Have 1 positive comment for every student.
- Remember when you were 12 years old!
- Let the student teach you something.
Suggested Wording

Personalize your language

- I liked....
- I enjoyed....
- I feel that......
- I see that.....

If asked...

- I suggest...
- A technique I have used.....
- The project would have more impact on me if....
Judging Tips and Tricks

• Get there early.
• Set timing goals for your exhibits. *(10-15 min per project)*
• Contestants’ understanding is as important as the project.
• Revise your scores as many times as you need.
• Don’t tally judging sheet in front of Contestants.
• If stuck on a project, see your Category Chair.
• Judging is finished after the 2nd Judge and Category Chair Meeting is completed (usually around 12:45pm). Be prepared to stay until 1:00pm especially if you are in a larger category.
How to Judge a Project

Before starting to judge, see your assigned projects to get a feel for what they are about, what they look like, and their location.

To judge a project do the following:

• Read through the display board in some logical order.

• Assess it's impact, and how well it tells the "story" of the project.

• Do you quickly understand what the project is trying to do, and what the results were?

• If equipment or devices are part of the display, do they serve an obvious purpose based on what you have seen so far?
How to Judge a Project

- Read through the abstract. Assess it.
- Read through the workbook *(journal and/or report)*. Assess it.
- Write down questions and compliments, for use in the Interview, and add to comments section of the judging form.
- Note your marks.
- Do not "team-judge." Ask your Category Chair or another experienced judge if you have any questions during judging.
How to Judge a Project

• Once all projects are interviewed & scored:
 – Write down the rank order of the projects you have judged, based on your day’s overall impressions.
 – Which one is best?
 – Which should be at the bottom of the list?
 – Now check the total score you have assigned to each project.
 – Is your ranking impression consistent with the marks you've assigned? Decide if you need to review anything.
Sample Judging Rubric

Judge’s Scoring Guidelines & Worksheet for SCIENTIFIC & ENGINEERING RESEARCH PROJECTS

Award the Best ... Encourage the Rest

Project Number:

Title/Keywords:

Judge scoring is conducted using a 100-point scale, with points assigned to Research Question, Design/Methodology, Data Collection, Analysis-Interpretation, Creativity, and Presentation (poster & interview) for Scientific Projects OR Research Problem, Design/Methodology, Construction & Testing, Creativity, and Presentation (poster & interview) for Engineering Projects. Review the criteria carefully and use the one most appropriate (scientific project or engineering project) for each project you are judging. Team projects have a slightly different balance of points including points for teamwork. The following is a set of criteria that can assist you in interviewing and scoring your projects. A more thorough discussion of the criteria can be found in the Judging Guide.

GUIDELINES

<table>
<thead>
<tr>
<th>I. RESEARCH QUESTION – SCIENTIFIC PROJECTS</th>
<th>NOTES</th>
<th>MAXIMUM POINTS AVAILABLE</th>
<th>POINTS GIVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Clear and focused purpose</td>
<td></td>
<td>10 Points MAX</td>
<td></td>
</tr>
<tr>
<td>• Identifies contribution to field of study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Testable using scientific methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or RESEARCH PROBLEM – ENGINEERING PROJECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Description of a practical need or problem to be solved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Definition of criteria for proposed solution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Explanation of problem constraints</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. DESIGN & METHODOLOGY – SCIENTIFIC PROJECTS</th>
<th>NOTES</th>
<th>MAXIMUM POINTS AVAILABLE</th>
<th>POINTS GIVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Well-designed plan and data collection methods</td>
<td></td>
<td>15 Points MAX</td>
<td></td>
</tr>
<tr>
<td>• Variables and controls defined, appropriate, and complete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or DESIGN & METHODOLOGY – ENGINEERING PROJECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Exploration of alternatives to answer need or problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identification of a solution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Development of a prototype/prototype</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III. DATA COLLECTION & METHODOLOGY – SCIENTIFIC PROJECTS</th>
<th>NOTES</th>
<th>MAXIMUM POINTS AVAILABLE</th>
<th>POINTS GIVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Systematic data collection & analysis</td>
<td></td>
<td>20 Points MAX</td>
<td></td>
</tr>
<tr>
<td>• Reproducibility of results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Appropriate application of mathematical and statistical methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sufficient data collection to support conclusions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or CONSTRUCTION & TESTING – ENGINEERING PROJECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Prototype demonstrates intended design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Prototype has been tested in multiple conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Prototype demonstrates engineering skill & completeness</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV. CREATIVITY</th>
<th>NOTES</th>
<th>MAXIMUM POINTS AVAILABLE</th>
<th>POINTS GIVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Project demonstrates creativity in one or more of the above criteria</td>
<td></td>
<td>20 Points MAX</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V. PRESENTATION – DISPLAY BOARD/POSTER</th>
<th>NOTES</th>
<th>MAXIMUM POINTS AVAILABLE</th>
<th>POINTS GIVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Logical organization of material</td>
<td></td>
<td>10 Points MAX</td>
<td></td>
</tr>
<tr>
<td>• Clarity of purpose and agenda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Supporting documentation displayed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VI. PRESENTATION – INTERVIEW</th>
<th>NOTES</th>
<th>MAXIMUM POINTS AVAILABLE</th>
<th>POINTS GIVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Clear, concise, thoughtful responses to questions</td>
<td></td>
<td>25 Points MAX</td>
<td></td>
</tr>
<tr>
<td>• Understanding of basic science relevant to project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Understanding of interpretation and limitations of results and conclusions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Degree of independence in conducting project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Recognition of potential impact on science, society, and industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Quality of ideas for future research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• TEAM PROJECTS – Criteria and understanding of project by all team members</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL POINTS =

Keep this sheet with you and use it to take notes. Actual scores and comments are recorded on other forms.

PLEASE RETURN THIS FORM TO YOUR JUDGE CHAIR WHEN YOU HAVE COMPLETED THE JUDGING PROCESS AS IT IS SENSITIVE INFORMATION THAT IS SHREDDED AFTER THE COMPETITION.

ADDITIONAL NOTES...
Sample Questions

• Why did you decide to study this topic?
• What are your controlled variables?
• How accurate are your readings?
• What future applications can you see from the results of this project?
• What one outstanding thing did you learn doing this project?
• How would you improve this project if you would do it again?
ENJOY this unique experience!

Remember the reason we do all this is for the students!